Numsense! Data Science for the Layman: No Math Added

Numsense! Data Science for the Layman: No Math Added

Editorial Review

Used in Stanford's CS102 Big Data (Spring 2017) course.

Want to get started on data science?
Our promise: no math added.

This book has been written in layman's terms as a gentle introduction to data science and its algorithms. Each algorithm has its own dedicated chapter that explains how it works, and shows an example of a real-world application. To help you grasp key concepts, we stick to intuitive explanations and visuals.

Popular concepts covered include:

- A/B Testing
- Anomaly Detection
- Association Rules
- Clustering
- Decision Trees and Random Forests
- Regression Analysis
- Social Network Analysis
- Neural Networks

Features:

- Intuitive explanations and visuals
- Real-world applications to illustrate each algorithm
- Point summaries at the end of each chapter
- Reference sheets comparing the pros and cons of algorithms
- Glossary list of commonly-used terms

With this book, we hope to give you a practical understanding of data science, so that you, too, can leverage its strengths in making better decisions.